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Abstract - A two-dimensional shape identification problem, i.e. inverse geometry problem, of estimating
simultaneously two interfacial configurations in a multiple (three) region domain is solved in this study by using
the Conjugate Gradient Method (CGM) and Boundary Element Method (BEM)-based inverse algorithm. Two
over-utilized conditions should be applied in determining two gradient equations, this differs from our previous
relevant studies. Numerical experiments using different measurement errors and number of sensors were
performed to justify the validity of the conjugate gradient method in solving this shape identification problem.
Finally it is concluded that the present algorithm can estimate the accurate interfacial configurations.

1. INTRODUCTION
The objective of the present inverse geometry problem is to estimate the unknown interfacial configurations in a
multiple region domain. This approach can be applied to many other applications such as the interface geometry
identification for the composite material and for the phase change (Stefan) problems, ice thickness estimation in
a thermal storage system and crystal growth estimation, etc. In the previous work by Huang and Chao [3], a
steady-state shape identification problem has been solved successfully by using boundary element method with
both the Levenberg-Marquardt method (LMM) and conjugate gradient method (CGM) [1]. Based on the
algorithm developed in [3], Huang and Tsai [5] extended to a transient inverse geometry problem in identifying
the unknown irregular boundary configurations from external measurements. Huang and Chen [2] extended the
similar algorithm to a multiple region domain in estimating the time and space varying outer boundary
configurations.

Park and Shin applied the coordinate transformation technique with the adjoint variable method to a
shape identification problem in determining unknown boundary configurations for heat conduction systems [8]
and natural convection systems [9]. It should be noted that except for [2], all the above references are to
determine the boundary configurations in a single region domain. In [2], it is a multiple domain problem, but is
also in determining the boundary configurations.

Kwag et al. [7] followed the algorithm used in [2] to estimate the phase front motion of ice in a thermal
storage system. It should be in a multiple region domain, however, the derived sensitivity and adjoint problems
become also in a single region domain, i. e. the coupled interfacial conditions are not used to solve those
problems. The discussions regarding the determination of interfacial configurations in a multiple region domain
has not been reported in the literature.

Recently, Huang and Shih [4] extented the inverse geometry problem based on [2] to a multiple region
domain in estimating the unknown interfacial configuration when considering fully expressions of the coupled
interfacial conditions for both the sensitivity and adjoint problems. Good estimations for the interfacial
configuration were obtained in that study. As we may expect the task of this study is obviously more difficult
than [4].

2. THE DIRECT PROBLEM
The following heat conduction problem in a multiple (three) region domain is used to illustrate the methodology
for developing expressions in determining simultaneously the interfacial configurations. The boundary
conditions for regions 1, 2 and 3 are all assumed insulated at x = 0 and L. The boundary condition for 1 at y
= 0 is subjected to a Robin condition with ambient temperature hT and heat transfer coefficient h. The

boundary condition for 3 at y = H is also subjected to a Robin condition with ambient temperature cT and

heat transfer coefficient h. The interface conditions along (x) and 2(x) are assumed perfect thermal contact
condition, i.e. temperatures and heat fluxes for regions 1, 2 and regions 2 , 3 are the same along (x) and
2(x), respectively.

Figure 1 shows the geometry and the coordinates for the composite material considered here, where the
dots “” (M=20) and triangles “” (M=10) denote the sensors’ locations on each of the surfaces y = 0 and y = H.
The dimensionless mathematical formulation of this heat conduction problem in three regions is given by:
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Here subscripts 1, 2 and 3 denote three different regions, respectively;k1, k2 and k3 are the thermal
conductivity for regions 1, 2 and 3, respectively. Constant boundary elements over space are adopted for all the
examples illustrated here.

3. THE SHAPE IDENTIFICATION PROBLEM
For the shape identification problem, the interfacial configurations along (x) and 2(x)are regarded as being
unknown, but everything else in direct problem, i.e. eqns (1) to (5) are known. In addition, temperature readings
taken at some appropriate locations at y = 0 and H are considered available.

Referring to Figure 1, we assume that M sensors installed along each y = 0 and H are used to record the
temperature information to identify simultaneously the interfacial configurations along (x) and 2(x)in the
shape identification calculations. Let the temperature readings taken by these sensors be denoted by Y1(xm,0) 
Y1(xm) and Y3(xm,H) Y3(xm); m = 1 to M, where M represents the number of thermocouples. The solution

of the present shape identification problem is to be obtained in such a way that the following functional is
minimized:
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where (x-xm) is the Dirac delta function and xm (m = 1 to M) refers to the measured positions. T1(xm) and

T3(xm) are the estimated or computed temperatures along y = 0 and H at the measurement locations (xm,0) and

(xm,H), respectively. These quantities are determined from the solution of the direct problem given previously

by using the estimated (x) and 2(x) for the exact (x) and 2(x).

4. CONJUGATE GRADIENT METHOD FOR MINIMIZATION
The following iterative process based on the conjugate gradient method [1] can be used for the estimation of
unknown interfacial configurations, 1(x) and 2(x), by minimizing the functional J[1(x),2(x)] as :
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where n
1 and n

2 are the search step sizes, P1

n
(x) and P2

n
(x) are the directions of descent. The definitions

of those quantities can be found in [1].
To perform the iterations according to eqn (7), we need to compute the step sizes and the gradients of the

functional )x(J
n'

1 and )x(J
n'

2 . In order to develop expressions for the determination of these quantities, the
sensitivity problems and adjoint problems are constructed as described below.

4.1 Sensitivity problems and search step sizes
Since the problem involves two unknown interfacial boundary configurations 1(x) and 2(x), in order to derive
the sensitivity problem for each unknown function, we should perturb the unknown function one at a time.

The first sensitivity problem can be obtained from the original direct problem defined by equations (1), (2)

and (3) by assuming that when 1(x) undergoes a variation 1(x), T1, T2 and T3 are perturbed by 1T̂ , 2T̂

and 3T̂ , respectively. Then replacing 1 in the direct problem by 1+1, T1 by T1+ 1T̂ , T2 by T2+ 2T̂ and

T3 by T3+ 3T̂ , subtracting from the resulting expressions the direct problem and neglecting the second-order

terms, the following sensitivity problem for the sensitivity functions 1T̂ , 2T̂ and 3T̂ are obtained.
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We should note that the sensitivity problems are now de-coupled as two independent problems at y = 1(x)
since the interface conditions along 1(x) become independent to each other.

Based on eqns (4) and (11), the following interfacial conditions can also be obtained
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The above two equations are needed in deriving the interfacial conditions for adjoint problems.
Similarly, the second sensitivity problem can be obtained by assuming that when 2(x) undergoes a

variation 2(x), T1, T2 and T3 is perturbed by 1T
~

 , 2T
~

 and 3T
~

 , respectively. By following the same
procedures as stated before, the equations for the second sensitivity problem are identical to the first sensitivity
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problem except for the interfacial conditions. The interfacial conditions for the second sensitivity problem can be
obtained as
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Based on eqns (5) and (15), the following interfacial conditions along 2(x) can also be obtained
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Equations (16a) and (16b) are needed in deriving the interfacial conditions for adjoint problems. The

search step sizes are determined by minimizing the functional (6) with respect to n
1 and n

2 , respectively.
The following expressions are obtained for the determination of search step sizes.
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4.2 Adjoint problem and gradient equation
To obtain the first adjoint problem, eqns (1a), (2a) and (3a) are multiplied by the Lagrange multipliers (or adjoint
functions) (1), (2) and (3), respectively, and the resulting expression is integrated over the
corresponding space domains. Then the result is added to the right hand side of eqn (6). By following the similar
procedure as was discussed in [1], the following adjoint problems for the determination of (1), (2) and
(3) are obtained
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The standard techniques of BEM can be used to solve the above adjoint problems.

Finally the gradients of functional '
1J (x) and '

2J (x) can be obtained as:
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5. RESULTS AND DISCUSSIONS
To illustrate the validity of the present inverse algorithms in identifying interfacial boundary configurations 1(x)
and 2(x) simultaneously in a multiple region domain from the knowledge of temperature recordings, we
consider three specific examples for the following numerical experiments.

The objective of this study is to show the accuracy of the present algorithm in simultaneously estimating
interfacial configurations 1(x) and 2(x) with no prior information on the functional form of the unknown
quantities, which is the so-called function estimation. Moreover, it can be shown numerically that the number of
sensor can be reduced when the conjugate gradient method is applied.

In order to compare the results for situations when random measurement errors are considered, we
assume normally distributed uncorrelated errors with zero mean and constant standard deviation. The simulated
inexact measurement data Y1 and Y3 can be expressed as

Y1 = Y1,exact + 1 and Y3 = Y3,exact + 3 (24a,b)

where Y1,exact and Y3,exact are the solutions of the direct problem with the exact 1(x) and 2(x); 1 and 3are

the standard deviation of the measurements; and is a random variable that generated by subroutine DRNNOR
of the IMSL [6] and will be within -2.576 to 2.576 for the 99% confidence bounds. The stopping criterion is
calculated based on the discrepancy principle [1].

In all the test cases considered here we have chosen L = 10.0 m, H = 3.0 m, hT = 100 oC, cT = 10 oC
and h = 10 W/m2-oC. Twenty constant elements are used on both upper and lower boundaries, while twenty
constant elements are also adopted for each domain on the right and left boundaries. The sensor's locations are
placed along y = 0 and H m, i.e. on the lower and upper boundaries. The initial guess for all test case considered

here is chosen as 1
0(x) = 1.0 m and 2

0(x) = 2.0 m.
We now present below the numerical experiments in simultaneously determining 1(x) and 2(x) by the

present shape identification analysis. The unknown boundary configurations at y = 1(x) and 2(x) are assumed
to vary with x in the form

1

L
0.7 0.12x ; 0 x

2(x)
L

1.9 0.12x ; x L
2

    
   


and 2
x

(x) 2.0 0.3sin( ) ; 0 x L
5


     (25a,b)

Firstly the shape identification analysis is performed by assuming k1 = 3, k2 = 20, and k3 = 8 W/m-oC.
Twenty thermocouple measurements are used, i.e. M = 20, along y = 0 and H m (referring to Figure 1 where the
solid circular dots denote the sensors’ location) with thermocouple spacing x = 0.5 m. The estimated results for
the interfacial configurations of 1(x) and 2(x) by using measurement errors (1,3) = (0.0,0.0), (0.4,0.1) and
(0.8,0.2) are reported in Table 1. The average relative errors between exact and estimated interfacial boundary
configurations are defined as
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Here (M+1) represents the total discrete number of unknown parameters, while 1,2 and 21
ˆ,̂ denote

the exact and estimated values of interfacial configurations.
When examining the result of estimations in Table 1, we have (ERR1,ERR2) = (1.20 % ,0.91 %) for

(1,3) = (0.0,0.0). This implies that good estimation for 1(x) and 2(x) have been obtained since very accurate
interfacial shapes can be estimated. When the case (1,3) = (0.8,0.2) is considered, the estimated results reveal
that (ERR1,ERR2) = (5.52%,8.16%) is obtained. Here (1,3) = (0.8,0.2) represents about 1.0 % of the average
measured temperature since the average measured temperatures on y = 0 and H are about 80 and 20,
respectively.

This implies that the measurement error needs to be a very small number to obtain a reliable solution.
This is reasonable because when k1=k2=k3, i.e. homogeneous material, it is impossible to estimate the shape of
interfacial boundaries since the measured temperatures along y = 0 and H will always be the same for different
interfacial geometry. For this reason we expect that as the value of difference between k1, k2 and k3 is increased,
good estimations should be obtained by using less accurate measurement data.
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The analysis is then proceeding to the case when the values of difference between k1, k2 and k3 are
increased. Here k1 = 3, k2 = 100 and k3 = 8 W/m-oC and using 20 thermocouple measurements, i.e. M = 20,
along y = 0 and H are assumed. When using (1,3) = (0.0,0.0) and = 0.006, after 13 iterations the interfacial
shapes can be obtained and is plotted in Figure 2 and reported in Table 1. The average relative errors for this case
are calculated as (ERR1,ERR2) = (0.60%,0.55%) and is about of the same order when comparing with the
previous test case with exact measurements in Table 1.

Next let us discuss the influence of the measurement errors on the inverse solutions. First, the
measurement errors for the temperature are taken as (1,3) = (0.8,0.2), i.e. about 1 % of the average measured
temperature. Then error is increased to (1,3) = (1.6,0.4), i.e. about 2 % of the average measured temperature.
The estimated interfacial shapes for (1,3) = (0.8,0.2) are shown in Figures 3, which are also reported in Table
1.

The number of iteration for (1,3) = (0.8,0.2) is 2 and the average errors for 1(x) and 2(x) are
calculated as (ERR1,ERR2) = (3.41%,5.21%). The number of iteration for (1,3) = (0.8,0.2) is also 2 and the
average errors for 1(x) and 2(x) are calculated as (ERR1,ERR2) = (3.42%,5.26%). By comparing the estimated
results of the above cases in Table 1 we found what we expected that when the value of difference between k1, k2

and k3 is increased, good estimations can be obtained by using less accurate measurement data.
Can the number of sensors be reduced with the present approaches? In the CGM, the measurement

temperatures at sensors’ locations represent the boundary point sources that appeared in the adjoint equations
(18b) and (20b). It is possible to reduce the number of boundary point sources even though it will influence the
values of J1' and J2'. Now the question is how this strategy will influence the accuracy of the inverse solutions?
To answer this, the numerical experiments are moved on to the case with M = 10 (x = 1.0 m) in simultaneous
estimating 1(x) and 2(x) with measurement errors (1,3) = (0.0,0.0) and (0.8,0.2), respectively. The estimated
interfacial configurations are plotted in Figures 2 and 3, respectively, and the results are also reported in Table 1
as well.

From the above comparisons of figures and numerical data we learned that the inverse solutions in
predicting 1(x) and 2(x) with 20 sensors are slightly better than that with 10 sensors; however, the latter case is
already good enough to be accepted as the inverse solutions. This represents that the number of sensors can be
reduced when the CGM is applied.

Besides, when using (1,3) = (1.6,0.4) and M = 20, it represents about 2 % measurement error. When
using this 2 % error, the resultant average errors for 1(x) and 2(x) are obtained as (ERR1,ERR2) =
(3.42%,5.26%). This implies that the CGM is not sensitive to the measurement errors since the measurement
errors did not amplify the errors of the estimated boundary shapes (the errors are of the same order). Therefore
this technique provides confidence estimation.

6. CONCLUSIONS
The conjugate gradient method (CGM) was successfully applied for the solution of the shape identification
problem to determine simultaneously the unknown irregular interfacial configurations by utilizing temperature
readings. Several test cases involving different functional forms of 1(x) and 2(x), different measurement errors
and different number of sensors were considered. The results show that (1). The CGM needs very short CPU
time on Pentium IV 1.4 GHz PC; (2). The CGM is not sensitive to the measurement errors and (3). The number
of sensors can be reduced in performing the shape identification calculations.

Acknowledgment
This work was supported in part through the National Science Council, R. O. C., Grant number,
NSC-93-2611-E-006-015.

REFERENCES
1. O.M. Alifanov, Inverse Heat Transfer Problems, Springer-Verlag, Berlin Heidelberg, 1994.
2. C.H. Huang and H.M. Chen, An inverse geometry problem of identifying growth of boundary shapes in a

multiple region domain. Numerical Heat Transfer; Part A (1999) 35, 435-450.
3. C.H. Huang and B.H. Chao, An inverse geometry problem in identifying irregular boundary configurations.

Int. J. Heat Mass Transfer (1997) 40, 2045-2053.
4. C.H. Huang and C.C. Shih, A shape identification problem in estimating the interfacial configurations in a

multiple region domain. J. Thermophys Heat Transfer, 2004 (accepted).
5. C.H. Huang and C.C. Tsai, A transient inverse two-dimensional geometry problem in estimating

time-dependent irregular boundary configurations. Int. J. Heat Mass Transfer (1998) 41, 1707-1718.
6. IMSL Library Edition 10.0. User's Manual: Math Library Version 1.0, IMSL. Houston, TX, 1987.
7. D.S. Kwag, I.S. Park and W.S. Kim, Inverse geometry problem of estimating the phase front motion of ice in a

thermal storage system. Inverse Problems in Engineering (2004) 12, 1-15.

H04
6



8. H.M. Park and H.J. Shin, Empirical reduction of modes for the shape identification problems of heat
conduction systems. Comput. Meth. Appl. Mech. Eng. (2003) 192, 1893-1908.

9. H.M. Park and H.J. Shin, Shape identification for natural convection problems using the adjoint variable
method. J. Comput. Phys. (2003) 186, 198-211.

0 2 4 6 8 10

x

0

1

2

3

y

1 k1

k2

k3

2

3

1(x)

2(x)

INSULATED

INSULATED

Figure 1. Geometry and coordinates.

H04
7



Estimated Results

Given Conditions

Convergence
criterion, 

Number of
iteration

Average
errors, %,

ERR1 = 1.20 %
M=20 0.006 37 ERR2 = 0.91 %

ERR1 = 2.41 %

k1 = 3, k2 = 20,
k3 = 8;
(,) 0.0,0.0

M=10 0.006 78 ERR2 = 2.84 %
ERR1 = 5.47 %

M=20 3.4 2 ERR2 = 8.15 %

ERR1 = 6.59 %

k1 = 3, k2 = 20,
k3 = 8;
(,) 0.4,0.1

M=10 1.7 3 ERR2 = 8.00 %
ERR1 = 5.52 %

M=20 13.6 2 ERR2 = 8.16 %

ERR1 = 10.88 %

k1 = 3, k2 = 20,
k3 = 8;
(,) 0.8,0.2

M=10 6.8 2 ERR2 = 8.69 %
ERR1 = 0.60 %

M=20 0.006 13 ERR2 = 0.55 %

ERR1 = 2.04 %

k1 = 3, k2 = 100,
k3 = 8;
(,) 0.0,0.0

M=10 0.006 19 ERR2 = 1.28 %
ERR1 = 2.73 %

M=20 3.4 3 ERR2 = 2.93 %

ERR1 = 4.71 %

k1 = 3, k2 = 100,
k3 = 8;
(,) 0.4,0.1

M=10 1.7 5 ERR2 = 3.40 %
ERR1 = 3.41 %

M=20 13.6 2 ERR2 = 5.21 %

ERR1 = 5.70 %

k1 = 3, k2 = 100,
k3 = 8;
(,) 0.8,0.2

M=10 6.8 3 ERR2 = 5.35 %
ERR1 = 3.42 %

M=20 54.4 2 ERR2 = 5.26 %

ERR1 = 8.10 %

k1 = 3, k2 = 100,
k3 = 8;
(,) 1.6,0.4

M=10 27.2 2 ERR2 = 6.95 %

Table 1. The estimated parameters for numerical tests.
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Figure 2. Exact and Estimated Interfacial Configurations by using (,) 0.0,0.0
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Figure 3. Exact and Estimated Interfacial Configurations by using (,) 0.8,0.2
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